In this talk, we study the properties of integral functionals induced on the Banach space of integrable functions by closed convex functions on a Euclidean space.

We give sufficient conditions for such integral functions to be strongly rotund (well-posed). We show that in this generality functions such as the Boltzmann-Shannon entropy and the Fermi-Dirac entropy are strongly rotund. We also study convergence in measure and give various limiting counter-example.

Variational methods have been used to derive symmetric solutions for many problems related to real world applications. To name a few we mention periodic solutions to ODEs related to N-body problems and electrical circuits, symmetric solutions to PDEs, and symmetry in derivatives of spectral functions. In this talk we examine the commonalities of using variational methods in the presence of symmetry.

This is an ongoing collaborative research project with Jon Borwein. So far our questions still outnumber our answers.

(Joint speakers, Jon Borwein and Michael Rose)

p>Using fractal self-similarity and functional-expectation relations, the classical theory of box integrals is extended to encompass a new class of fractal “string-generated Cantor sets” (SCSs) embedded in unit hypercubes of arbitrary dimension. Motivated by laboratory studies on the distribution of brain synapses, these SCSs were designed for dimensional freedom: a suitable choice of generating string allows for fine-tuning the fractal dimension of the corresponding set. We also establish closed forms for certain statistical moments on SCSs and report various numerical results. The associated paper is at http://www.carma.newcastle.edu.au/jon/papers.html#PAPERS.In this talk, we consider a general convex feasibility problem in Hilbert space, and analyze a primal-dual pair of problems generated via a duality theory introduced by Svaiter. We present some algorithms and their convergence properties. The focus is a general primal-dual principle for strong convergence of some classes of algorithms. In particular, we give a different viewpoint for the weak-to-strong principle of Bauschke and Combettes. We also discuss how subgradient and proximal type methods fit in this primal-dual setting.

Joint work with Maicon Marques Alves (Universidade Federal de Santa Catarina-Brazil)

(Rescheduled from 29 March.)

(Rescheduled from 10th April)

We investigate various properties of the sublevel set $\{x : g(x) \leq 1\}$ and the integration of $h$ on this sublevel set when $g$ and $h$ are positively homogeneous functions. For instance, the latter integral reduces to integrating $h\exp(- g)$ on the whole space $\mathbb{R}^n$ (a non-Gaussian integral) and when $g$ is a polynomial, then the volume of the sublevel set is a convex function of its coefficients.

In fact, whenever $h$ is non-negative, the functional $\int \phi(g)h dx$ is a convex function of $g$ for a large class of functions $\phi:\mathbb{R}_{+} \to \mathbb{R}$. We also provide a numerical approximation scheme to compute the volume or integrate $h$ (or, equivalently, to approximate the associated non-Gaussian integral). We also show that finding the sublevel set $\{x : g(x) \leq 1\}$ of minimum volume that contains some given subset $K$ is a (hard) convex optimization problem for which we also propose two convergent numerical schemes. Finally, we provide a Gaussian-like property of non-Gaussian integrals for homogeneous polynomials that are sums of squares and critical points of a specific function.